Channel length dependence of hot-carrier-induced degradation in n-type drain extended metal-oxide-semiconductor transistors

Jone F. Chen,1,a) Shiang-Yu Chen,1 Kuo-Ming Wu,2 and C. M. Liu2

1Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
2Taiwan Semiconductor Manufacturing Company, Ltd., No. 121, Park Ave. 3, Science-Based Industrial Park, Hsin-Chu 30077, Taiwan

(Received 24 July 2008; accepted 12 November 2008; published online 3 December 2008)

Channel length (L_{ch}) dependence of hot-carrier-induced degradation in n-type drain extended metal-oxide-semiconductor (DEMOS) transistors stressed under high drain voltage and high gate voltage is investigated. On-resistance degradation is reduced in longer L_{ch} device, however, threshold voltage shift (ΔV_T) is greater. Charge pumping data reveal that electron trapping in gate oxide above channel region is responsible for ΔV_T. Simulation results show that longer L_{ch} device exhibits enhanced vertical electric field (E_y), i.e., enhanced hot-electron injection, in channel region due to the alleviation of Kirk effect. Results presented in this letter reveal that enhanced ΔV_T driven by enhanced channel E_y may become a serious reliability concern in DEMOS transistors with longer L_{ch}. © 2008 American Institute of Physics. [DOI: 10.1063/1.3040693]

Drain extended metal-oxide-semiconductor (DEMOS) transistors are usually used in smart-power applications because they can be easily integrated into standard complementary MOS (CMOS) process. DEMOS transistors are prone to hot-carrier-induced degradation especially for devices operated under high drain voltage (V_D) and high gate voltage (V_G) because Kirk effect may become significant. It has been reported that devices with significant Kirk effect exhibit serious on-resistance (R_{on}) degradation. To suppress Kirk effect for a better reliability, devices using larger layout parameter or higher drift region doping has been proposed. In this letter, the effect of channel length (L_{ch}) on hot-carrier-induced degradation in n-type DEMOS device stressed under high V_D and high V_G is investigated. Although R_{on} degradation is reduced in longer L_{ch} device, an unexpected larger positive threshold voltage shift (ΔV_T) is observed. Charge pumping technique and technology computer-aided-design (TCAD) simulations are performed to understand the mechanism responsible for such an anomalous L_{ch} dependence on ΔV_T.

The cross section of n-type DEMOS transistors used in this letter is shown in the inset of Fig. 1. This device is fabricated with a modified 0.25 μm CMOS process. L_{ch} of the device with the same doping profile are 1.4, 2.5, and 4 μm (mask drawn length). The operational voltage is 20 V for both V_D and V_G. To ensure a reliable operation under $V_D=20$ V, a high quality gate oxide with 50 nm thickness is grown by thermal oxidation method for all L_{ch} devices. R_{on} ($=V_D/I_D$, where I_D is drain current) measured at $V_G=0.1$ V and $V_D=20$ V are 14, 29, and 56 mΩ mm² for $L_{ch}=1.4, 2.5$, and 4 μm devices, respectively. Threshold voltage (V_T) extracted by constant current method at $V_D=0.1$ V is roughly 1 V for all L_{ch} devices. dc hot-carrier stressing is performed at room temperature with the source and bulk connected to ground. Charge pumping technique is carried out to examine the formation of interface state (ΔN_{it}) and oxide trap (ΔN_{ot}) in channel region during stressing. The pulse with high level fixed at 4 V and low level (V_{gl}) varied from −0.4 to 2 V is applied to the gate under a frequency of 500 kHz. To investigate hot-carrier-induced damage located in the channel region, charge pumping current (I_{cp}) is measured at source terminal while drain is floating. The stress tests are interrupted periodically to measure the degradation of device parameters (including R_{on} and V_T) and I_{cp}. TCAD simulations (using ATLAS device simulator) are also performed to investigate the degradation mechanism for devices with different L_{ch}.

Figure 1 shows bulk current (I_B) versus V_G characteristics at $V_D=22$ V and gate current (I_G) versus V_G characteristics at $V_D=0$ V for devices with various L_{ch}. From I_B data, the small I_G (<10⁻¹² A/μm) indicates that gate current injection at source side region is negligible and 50 nm gate oxide is thick enough for $V_{gl}=20$ V operation. From I_B data, two I_G peaks are exhibited in $L_{ch}=1.4$ μm device, while only one I_G maximum is seen in $L_{ch}=4$ μm device. Simulated impact ionization (II) and potential contours at $V_D=22$ V and $V_G=20$ V in $L_{ch}=1.4$ and 4 μm devices are shown in

FIG. 1. (Color online) I_B vs V_G characteristics at $V_D=22$ V and I_G vs V_G characteristics at $V_D=0$ V for devices with various L_{ch}. The schematic cross section of the n-type DEMOS transistor used in this letter is shown in the inset.
Figs. 2(a) and 2(b), respectively. The simulations are well calibrated according to measured I_p-V_g data. Compared with $L_{ch}=4$ μm device, the magnitude of II rate is greater and the location of II peak is right shifted toward N^+ drain in $L_{ch}=1.4$ μm device. Results in Fig. 1 indicate that Kirk effect (related to the parasitic n-p-n bipolar transistor as illustrated in Fig. 1) is significant in $L_{ch}=1.4$ μm device, while Kirk effect is alleviated in $L_{ch}=4$ μm device due to a lower current density in N^+ drift region. In our stress tests, devices are stressed under $V_{ds}=22$ V with various V_g (5–20 V). Because the V_g to produce the most device degradation is $V_g=20$ V, the following analysis is focused on devices stressed under $V_g=20$ V. Figure 3 shows ΔV_T and R_{on} degradation (inset) for devices with various L_{ch}. The smaller R_{on} degradation in longer L_{ch} device can be explained by the alleviation of Kirk effect. Because R_{on} degradation is mainly determined by damage in N^+ drift region rather than damage in channel region, the alleviation of Kirk effect produces less damage in drift region, leading to smaller R_{on} degradation. However, the device with longer L_{ch} produces greater ΔV_T, though the magnitude of II rate in the channel region is smaller as seen in Fig. 2(a).

To investigate the mechanism responsible for the anomalous L_{ch} dependence on ΔV_T, I_{cp} resulted from damage located in the channel region is examined. The fresh and aged I_{cp} in $L_{ch}=1.4$ and 4 μm devices are shown in Figs. 4(a) and 4(b), respectively. No apparent lateral shift in I_{cp} spectrum (i.e., small ΔN_{ot}) after stressing is observed in $L_{ch}=1.4$ μm device. However, a significant rightward shift as a function of time in I_{cp} spectrum (i.e., significant negative ΔN_{ot}) after stressing is observed in $L_{ch}=4$ μm device. Note that the doping profile in channel region is almost uniform, revealing that the rightward shift in I_{cp} spectrum is not caused by doping profile variation. To evaluate hot-carrier-induced ΔN_{ot} in $L_{ch}=4$ μm device, the impact of ΔN_{ot} on I_{cp} spectrum should be eliminated. This can be achieved by a properly leftward shift of I_{cp} spectrum by the amount of flat-band voltage (V_{fb}) shift. V_{fb} is defined as the V_g when hole concentration at Si/SiO$_2$ interface reaches 10^{14} cm$^{-3}$. From simulation results, the fresh V_{fb} in channel region is roughly −0.4 V. The resulting I_{cp} due to ΔN_{ot} only is shown in the inset of Fig. 4(b). I_{cp} increase due to ΔN_{ot} is much greater in $L_{ch}=1.4$ μm device [Fig. 4(b)] than that in $L_{ch}=4$ μm device [inset of Fig. 4(b)]. This is consistent with results in Fig. 2(a) that II rate in channel region is much greater in $L_{ch}=1.4$ μm device. From data in Figs. 4(a) and 4(b), it is suggested that significant ΔV_T in $L_{ch}=4$ μm device is mainly resulted from severe electron trapping in gate oxide above channel region.

To identify the driving force of electron trapping, Fig. 5 shows simulated vertical electric field (E_z) distribution along channel at Si/SiO$_2$ interface [cutline is indicated in Fig. 2(b)].
under $V_d = 22$ V and $V_g = 20$ V. E_y is much higher in $L_{ch} = 4 \ \mu m$ device than that in $L_{ch} = 1.4 \ \mu m$ device, indicating that hot-electron injection and trapping is enhanced in $L_{ch} = 4 \ \mu m$ device. Such a result explains why greater ΔV_T is exhibited in longer L_{ch} device. To explain such L_{ch} dependence on E_y (related to ΔN_{ot}), potential contours of the devices are analyzed in Fig. 2(b). It is clear that a relatively large portion of potential drop is distributed in N^- drift region in $L_{ch} = 1.4 \ \mu m$ device due to significant Kirk effect, resulting in smaller E_y near the gate oxide in channel region. On the other hand, relatively large portion of potential drop (especially in vertical direction) is distributed in channel region in $L_{ch} = 4 \ \mu m$ device due to the alleviation of Kirk effect, resulting in higher E_y near the gate oxide. Note that the peak E_y is located in drain side of channel region (in Fig. 5), indicating that ΔV_T is caused by ΔN_{ot} in the gate oxide above the drain side of channel region. I_g data in Fig. 1 also reveal that source-side gate current injection is negligible at $V_g = 20$ V. Such a result is quite different from recently published data that significant ΔV_T is due to source-side injection.10 From the above analysis, it is suggested that the greater ΔV_T in longer L_{ch} device is resulted from severe hot-electron injection and trapping caused by enhanced E_y in drain side of channel region.

In this letter, hot-carrier-induced R_{on} degradation is reduced but ΔV_T is greater in n-type DEMOS device with longer L_{ch}. The greater ΔV_T in longer L_{ch} device is attributed to enhanced hot-electron injection and trapping in gate oxide above channel region. The enhanced electron injection is resulted from enhanced E_y in drain side of the channel region because of the alleviation of Kirk effect. Results presented in this study suggest that enhanced ΔV_T driven by enhanced channel E_y in longer L_{ch} device should be noticed in evaluating the reliability of DEMOS devices.

The authors would like to thank J. R. Lee for the assistance in the experiments.

7 V. Parthasarathy, V. Khemka, and A. Bose, Tech. Dig. - Int. Electron Devices Meet. 2000, 75.

